Si9181 **Vishay Siliconix**

Micropower 350-mA CMOS LDO Regulator With Error Flag/Power-On-Reset

FEATURES

- Low 150-mV Dropout at 350-mA Load
- Guaranteed 350-mA Output Current •
- 600-mA Peak Output Current Capability •
- Uses Low ESR Ceramic Output Capacitor •
- Fast Load and Line Transient Response
- Only 100-µV(rms) Noise With Noise Bypass Capacitor
- 1-µA Maximum Shutdown Current •
- Built-in Short Circuit and Thermal Protection
- Out-Of-Regulation Error Flag (Power Good or POR)

DESCRIPTION

The Si9181 is a 350-mA CMOS LDO (low dropout) voltage regulator. The device features ultra low ground current and dropout voltage to prolong battery life in portable electronics. The Si9181 offers line/load transient response and ripple rejection superior to that of bipolar or BiCMOS LDO regulators. The device is designed to maintain regulation while delivering 600-mA peak current. This is useful for systems that have high surge current upon turn-on. The Si9181 is designed to drive the lower cost ceramic, as well as tantalum, output capacitors. The device is guaranteed stable from maximum load current down to 0-mA load. In addition, an external noise bypass

8

7

6

5

-0 VOUT

2.2 uF

0.1 μF

1

2

з

4

CNOISE

SD

ERROR

VOUT

0.1 μF

VIN O

GND O

2.2 uF

SENSE/ADJ

Si9181

FIGURE 1. Fixed Output

TYPICAL APPLICATIONS CIRCUITS

CNOISE

DELAY

GND

VIN

VIN O

GND C

2.2 uF

- Fixed 1.5-V, 1.8-V, 2.5-V, 2.8-V, 3.0-V, 3.3-V, 5.0-V, or Adjustable Output Voltage Options
- Other Output Voltages Available by Special Order

APPLICATIONS

- Cellular Phones
- Laptop and Palm Computers
- PDA, Digital Still Cameras

1

2

З

4

VIN

GND O

SD 8

2.2 μF

CNOISE

DELAY

GND

VıN

capacitor connected to the device's C_{NOISE} pin will lower the LDO's output noise for low noise applications.

The Si9181 also includes an out-of-regulation error flag. When the output voltage is 5% below its nominal output voltage, the error flag output goes low. If a capacitor is connected to the device's delay pin, the error flag output pin will generate a delayed power-on-reset signal.

The Si9181 is available in both standard and lead (Pb)-free packages.

8

7

6

5

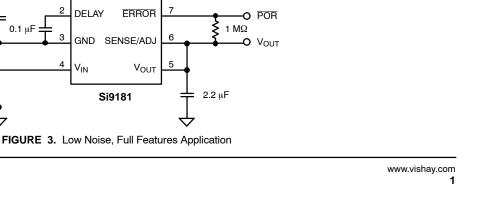
V_{OUT}

o

2.2 μF

SD

ERROR


VOUT

SENSE/ADJ

Si9181

o ^{ON/OFF}

FIGURE 2. Adjustable Output

Si9181 **Vishay Siliconix**

ABSOLUTE MAXIMUM RATINGS

Input Voltage, V _{IN}	6.5 V
SD Input Voltage, V _{SD}	
Output Current, I _{OUT}	. Short Circuit Protected
Output Voltage, V _{OUT}	-0.3 V to V _{O(nom)} + 0.3 V
Maximum Junction Temperature, T _{J(max)}	150°C
Storage Temperature, T _{STG}	55°C to 150°C
ESD (Human Body Model)	

Power	Dissipation	(Package)a

8-Pin TSSOP
Thermal Impedance (Θ _{JA})
8-Pin TSSOP ^b 120°C/W
Notes

a. Device mounted with all leads soldered or welded to PC board. b. Derate 8.3 mW/°C above $T_A=25\,^\circ C$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

Input Voltage, V _{IN}	2 V to 6 V
Output Voltage, V _{OUT} (Adjustable Version)1	.5 V to 5 V
SD Input Voltage, V _{SD}	0 V to V _{IN}

 C_{IN} = 2.2 μ F, C_{OUT} = 2.2 μ F (ceramic, X5R or X7R type) , C_{NOISE} = 0.1 μ F (ceramic) C_{OUT} Range = 1 μ F to 10 μ F (± 10%, x5R or x7R type) $C_{IN} \ge C_{OUT}$

SPECIFICATIONS

		Test Conditions Unless Otherwise Specified		Limits -40 to 85°C				
Parameter	Symbol	$\label{eq:VIN} \begin{split} V_{IN} = V_{OUT(nom)} + 1 \ V, \ I_{OUT} = 1 \ mA \\ C_{IN} = 2.2 \ \mu\text{F}, \ C_{OUT} = 2.2 \ \mu\text{F}, \ V_{\overline{SD}} = 1.5 \ V \end{split}$	Temp ^a	Min ^b	Турс	Max ^b	Unit	
Output Voltage Range		Adjustable Version	Full	1.5		5	V	
Output Voltage Accuracy	V _{OUT}		Room	-1.5		1.5	or 14	
(Fixed Versions)		$1 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	Full	-2.5		2.5	% V _{O(nom)}	
			Room	1.191	1.215	1.239		
Feedback Voltage (ADJ Version)	V _{ADJ}		Full	1.179		1.251	V	
Line Regulation (Except 5-V Version)		$\begin{array}{l} From \ V_{IN} = V_{OUT(nom)} + 1 \ V \\ to \ V_{OUT(nom)} + 2 \ V \end{array}$	Full	-0.18		0.18		
Line Regulation (5-V Version)	$\frac{\Delta V_{OUT} \times 100}{V_{IN} \times V_{OUT(nom)}}$	From $V_{IN} = 5.5 V$ to 6 V	Full	-0.18		0.18	%/V	
Line Regulation (ADJ Version)		V_{OUT} = 1.5 V, From V_{IN} = $\ 2.5$ V to 3.5 V	Full	-0.18		0.18		
		V_{OUT} = 5 V, From V_{IN} = 5.5 V to 6 V	Full	-0.18		0.18		
	VIN - VOUT	I _{OUT} = 10 mA	Room		5	20		
Dropout Voltage ^d		l _{OUT} = 200 mA	Room		85	180		
$(@V_{OUT} \ge 2V)$			Room		150	400	mV	
		I _{OUT} = 350 mA	Full			550		
		l _{OUT} = 200 mA	Room		170	250		
Dropout Voltage ^d (@V _{OUT} < 2 V, V _{IN} \ge 2 V)		I _{OUT} = 350 mA	Room		290	425	-	
			Full			575		
		I _{OUT} = 0 mA	Room		150			
Ground Pin Current	I _{GND}	L 000 A	Room		1000		1	
		I _{OUT} = 200 mA	Full			1500	μA	
		1 050	Room		1500		1	
		I _{OUT} = 350 mA	Full			2800		

Document Number: 71119 S-50955-Rev. F, 16-May-05

Operating Ambient Temperature, T_A $\ldots \ldots \ldots \ldots -40^\circ C$ to $85^\circ C$ Operating Junction Temperature, T_J $\ldots \ldots$ $-40^\circ C$ to $125^\circ C$

SPECIFICATIONS									
		Test Conditions Unless Otherwise Specified			Limits -40 to 85°C				
Parameter	Symbol	$V_{IN} = V_{OUT(nom)} + 1 V_{OUT}$ $C_{IN} = 2.2 \mu\text{F}, C_{OUT} = 2.2 \mu$		Temp ^a	Min ^b	Тур ^с	Max ^b	Unit	
								-	
Shutdown Supply Current	I _{IN(off)}	$V_{SD} = 0$	V	Room		0.1	1	μA	
ADJ Pin Current	I _{ADJ}	ADJ = 1.2	2 V	Room		5	100	nA	
Peak Output Current	I _{O(peak)}	$V_{OUT} \ge 0.95 \text{ x } V_{OUT}$	_{nom)} , t _{pw} = 2 ms	Room	600			mA	
Output Noise Voltage	e _N	BW = 50 Hz to 100 kHz	w/o C _{NOISE}	Room		200		μV (rms)	
Oulput Noise Voltage	eN	I _{OUT} = 150 mA	$C_{NOISE} = 0.1 \ \mu F$	Room		100		μν (ΠΙΒ)	
			f = 1 kHz	Room		60			
Ripple Rejection	$\Delta V_{OUT} / \Delta V_{IN}$	I _{OUT} = 150 mA	f = 10 kHz	Room		60		dB	
			f = 100 kHz	Room		40			
Dynamic Line Regulation	$\Delta V_{O(line)}$	$ \begin{array}{c} V_{IN}: V_{OUT(nom)} + 1 \ V \ to \ V_{OUT(nom)} + 2 \ V \\ t_{R}/t_{F} = 5 \ \mu s, \ l_{OUT} = 350 \ mA \end{array} $		Room		10		mV	
Dynamic Load Regulation	$\Delta V_{O(load)}$	I _{OUT} : 1 mA to 150 m	A, t _R /t _F = 2 μs	Room		30		1	
	t _{ON}	V _{IN} = 4.3 V V _{OUT} = 3.3 V	w/o C _{NOISE} Cap	Room		5		μs	
V _{OUT} Turn-On-Time			C _{NOISE} = 0.1 μF	Room		2		mS	
Thermal Shutdown			•	•					
Thermal Shutdown Junction Temp	t _{J(s/d)}			Room		165			
Thermal Hysteresis	t _{HYST}			Room		20		°C	
Short Circuit Current	I _{SC}	V _{OUT} = 0	V	Room		800		mA	
Shutdown Input		•					•		
<u>25</u> 1	VIH	High = Regulator	ON (Rising)	Full	1.5		VIN		
SD Input Voltage	V _{IL}	Low = Regulator C	PFF (Falling)	Full			0.4	V	
	IIH	V _{SD} = 0 V, Regu	lator OFF	Room		0.01			
SD Input Current ^e	IIL	V _{SD} = 6 V, Regu	ulator ON	Room		1.0		μΑ	
Shutdown Hysteresis	V _{HYST}			Full		100		mV	
Error Output		•				•	•		
Output High Leakage	I _{OFF}	ERROR = V _O	UT(nom)	Full		0.01	2	μΑ	
Output Low Voltageg	V _{OL}	I _{SINK} = 2	mA	Full			0.4		
Power_Good Trip Threshold ^{f, h} (Rising)	V _{TH}			Full	0.93 x V _{OUT}	0.95 x V _{OUT}	0.97 x V _{OUT}	V	
Hysteresis ^f	V _{HYST}			Room		2% x V _{OUT}			
Delay Pin Current Source	IDELAY			Room	1.2	2.2	3.0	μA	

Notes

a.

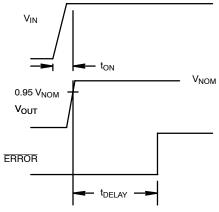
b.

tes Room = 25°C, Full = -40 to 85°C. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Typical values for dropout voltage at $V_{OUT} \ge 2$ V are measured at $V_{OUT} = 3.3$ V, while typical values for dropout voltage at $V_{OUT} < 2$ V are measured at $V_{OUT} = 1.8$ V. Dropout voltage is defined as the input to output differential voltage at which the output voltage drops 2% below the output voltage measured with a 1-V differential, provided that V_{IN} does not not drop below 2.0 V. The device's shutdown pin includes a typical 6-MΩ internal pull-down resistor connected to ground. V_{OUT} is defined as the output voltage of the DUT at 1 mA. The Error Output (Low) function is guaranteed from $V_{OUT} = 2.0$ V to $V_{OUT} = 5.0$ V. The Power_Good trip threshold function is guaranteed from $V_{OUT} = 1.5$ V to $V_{OUT} = 5.0$ V and $V_{IN} \ge 2.0$ V. c.

d.

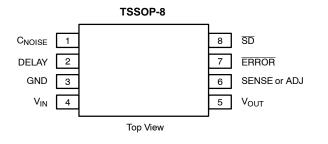
e.

f.


g. h.

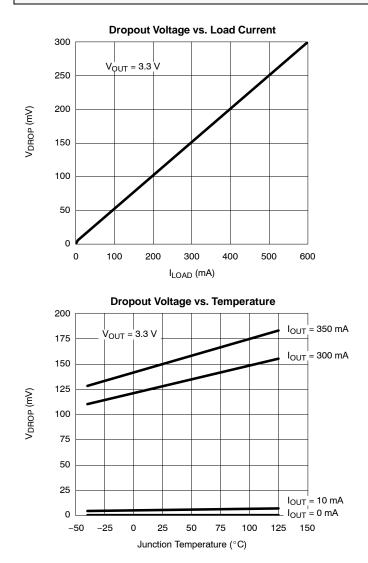
Si9181

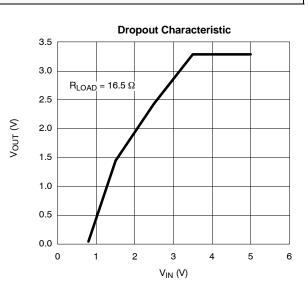
Vishay Siliconix

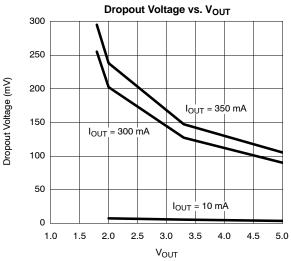


TIMING WAVEFORMS

PIN CONFIGURATION

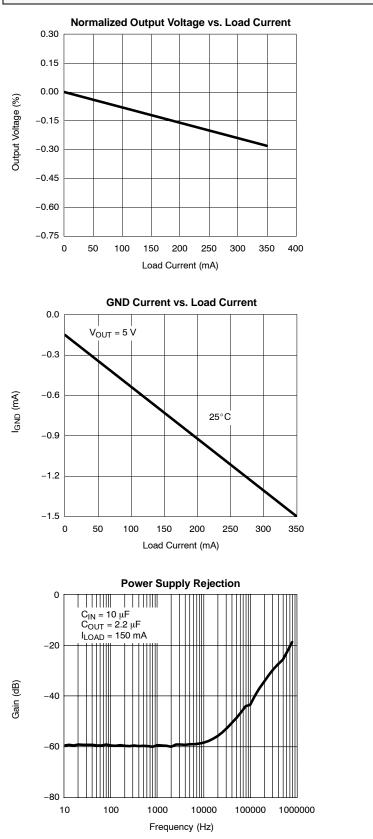

PIN DESCRIPTION				
Pin Number	Name	Function		
1	C _{NOISE}	Noise bypass pin. For low noise applications, a 0.01-µF or larger ceramic capacitor should be connected from this pin to ground.		
2	DELAY	Capacitor connected from this pin to ground will allow a delayed power-on-reset signal at the ERROR (Pin 7) output. Refer to Figure 4.		
3	GND	Ground pin. Local ground for C _{NOISE} and C _{OUT} .		
4	V _{IN}	Input supply pin. Bypass this pin with a 2.2- μ F ceramic or tantalum capacitor to ground.		
5	V _{OUT}	Output voltage. Connect C _{OUT} between this pin and ground.		
6	SENSE or ADJ	For fixed output voltage versions, this pin should be connected to V _{OUT} (Pin 5). For adjustable output voltage version, this voltage feedback pin sets the output voltage via an external resistor divider.		
7	ERROR	This open drain output is an error flag output which goes low when V _{OUT} drops 5% below its nominal voltage. This pin also provides a power-on-reset signal if a capacitor is connected to the DELAY pin.		
8	SD	By applying less than 0.4 V to this pin, the device will be turned off. Connect this pin to V_{IN} if unused.		

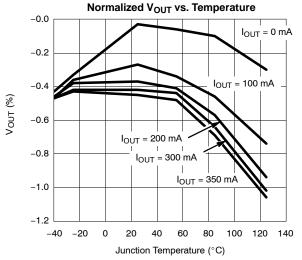



ORDERING INFORMATION						
Part Number	Lead (Pb)-Free Part Number	Marking	Voltage	Temperature Range	Package	
Si9181DQ-15-T1	Si9181DQ-15-T1—E3	115	1.5 V			
Si9181DQ-18-T1	Si9181DQ-18-T1—E3	118	1.8 V	–40 to 85°C		
Si9181DQ-25-T1	Si9181DQ-25-T1—E3	125	2.5 V			
Si9181DQ-28-T1	Si9181DQ-28-T1—E3	128	2.8 V		TSSOP-8	
Si9181DQ-30-T1	Si9181DQ-30-T1—E3	130	3.0 V		1330F-6	
Si9181DQ-33-T1	Si9181DQ-33-T1—E3	133	3.3 V			
Si9181DQ-50-T1	Si9181DQ-50-T1—E3	150	5.0 V			
Si9181DQ-AD-T1	Si9181DQ-AD-T1—E3	1AD	Adjustable			
* Additional voltage op	otions are available.	•		-	•	

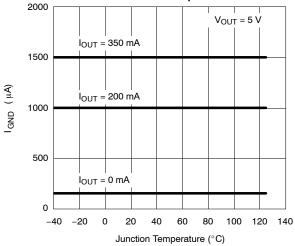
Eval Kit	Temperature Range	Board Type
Si9181DB	-40 to 85°C	Surface Mount

TYPICAL CHARACTERISTICS (INTERNALLY REGULATED, 25°C UNLESS NOTED)

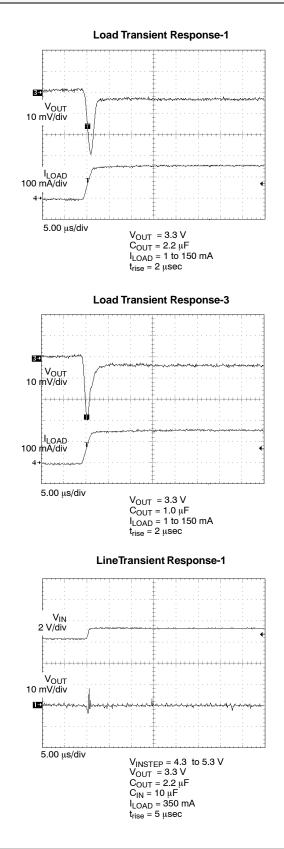

Document Number: 71119 S-50955—Rev. F, 16-May-05

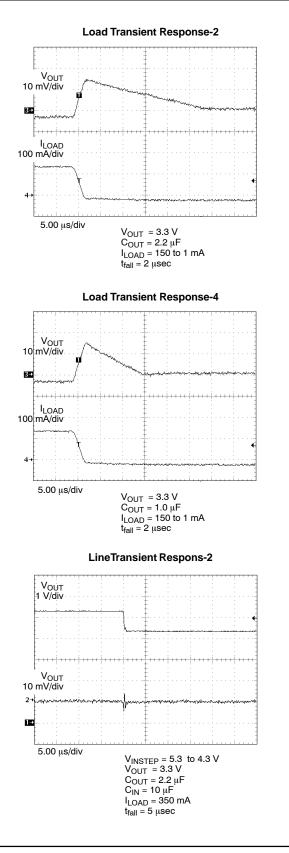

Vishay Siliconix

Si9181


TYPICAL CHARACTERISTICS (INTERNALLY REGULATED, 25°C UNLESS NOTED)

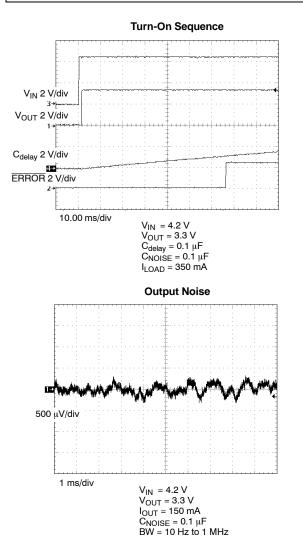
No Load GND Pin Current vs. Input Voltage 300 250 200 I_{GND} (µA) 85°C 150 25°C 100 -40°C 50 0 0 2 5 7 1 3 4 6 Input Voltage (V)

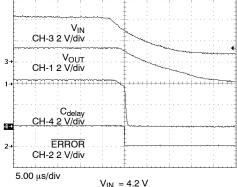

GND Pin Current vs. Temperature and Load



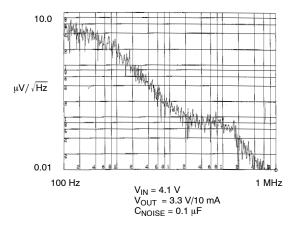
Si9181 Vishay Siliconix

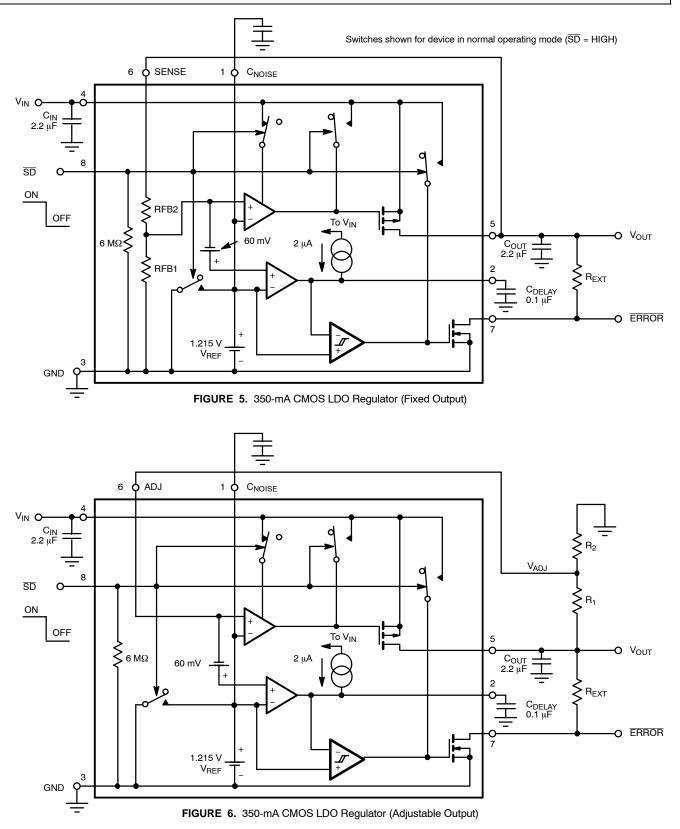
TYPICAL WAVEFORMS




Vishay Siliconix

TYPICAL WAVEFORMS




 $\begin{array}{l} V_{IN} \; = \; 4.2 \; V \\ V_{OUT} \; = \; 3.3 \; V \\ C_{delay} \; = \; 0.1 \; \mu F \\ C_{NOISE} \; = \; 0.1 \; \mu F \\ I_{LOAD} \; = \; 350 \; mA \end{array}$

Noise Spectrum

Vishay Siliconix

DETAILED DESCRIPTION

The Si9181 is a low drop out, low quiescent current, and very linear regulator family with very fast transient response. It is primarily designed for battery powered applications where battery run time is at a premium. The low quiescent current allows extended standby time while low drop out voltage enables the system to fully utilize battery power before recharge. The Si9181 is a very fast regulator with bandwidth exceeding 50 kHz while maintaining low quiescent current at light load conditions. With this bandwidth, the Si9181 is the fastest LDO available today. The Si9181 is stable with any output capacitor type from 1 µF to 10.0 µF. However, X5R or X7R ceramic capacitors are recommended for best output noise and transient performance.

V_{IN}

V_{IN} is the input supply pin. The bypass capacitor for this pin is not critical as long as the input supply has low enough source impedance. For practical circuits, a 1.0-µF or larger ceramic capacitor is recommended. When the source impedance is not low enough and/or the source is several inches from the Si9181, then a larger input bypass capacitor is needed. It is required that the equivalent impedance (source impedance, wire, and trace impedance in parallel with input bypass capacitor impedance) must be smaller than the input impedance of the Si9181 for stable operation. When the source impedance, wire, and trace impedance are unknown, it is recommended that an input bypass capacitor be used of a value that is equal to or greater than the output capacitor.

V_{OUT}

V_{OUT} is the output voltage of the regulator. Connect a bypass capacitor from VOUT to ground. The output capacitor can be any value from 1.0 µF to 10.0 µF. A ceramic capacitor with X5R or X7R dielectric type is recommended for best output noise, line transient, and load transient performance.

GND

Ground is the common ground connection for $V_{\mbox{\scriptsize IN}}$ and $V_{\mbox{\scriptsize OUT}}$ It is also the local ground connection for C_{NOISE}, DELAY, SENSE or ADJ, and SD.

SENSE or ADJ

SENSE is used to sense the output voltage. Connect SENSE to V_{OUT} for the fixed voltage version. For the adjustable output version, use a resistor divider R1 and R2, connect R1 from VOLT to ADJ and R2 from ADJ to ground. R2 should be in the 25-k Ω to 150-k Ω range for low power consumption, while maintaining adequate noise immunity.

The formula below calculates the value of R1, given the desired output voltage and the R2 value,

$$R1 = \frac{(V_{OUT} - V_{ADJ})R2}{V_{ADJ}}$$

$$V_{ADJ} \text{ is nominally 1.215 V.}$$
(1)

SHUTDOWN (SD)

SD controls the turning on and off of the Si9181. VOUT is guaranteed to be on when the SD pin voltage equals or is greater than 1.5 V. V_{OUT} is guaranteed to be off when the SD pin voltage equals or is less than 0.4 V. During shutdown mode, the Si9181 will draw less than $2-\mu A$ current from the source. To automatically turn on VOUT whenever the input is applied, tie the \overline{SD} pin to V_{IN}.

ERROR

ERROR is an open drain output that goes low when V_{OUT} is less than 5% of its normal value. As with any open drain output, an external pull up resistor is needed. When a capacitor is connected from DELAY to GROUND, the error signal transition from low to high is delayed (see Delay section). This delayed error signal can be used as the power-on reset signal for the application system. (Refer to Figure 4.)

The ERROR pin is disconnected if not used.

DELAY

A capacitor from DELAY to GROUND sets the time delay for ERROR going from low to high state. The time delay can be calculated using the following formula:

$$T_{delay} = \frac{(V_{ADJ})C_{delay}}{I_{delay}}$$
(2)

The DELAY pin should be an open circuit if not used.

CNOISE

For low noise application, connect a high frequency ceramic capacitor from C_{NOISE} to ground. A 0.01- μF or a 0.1- μF X5R or X7R is recommended.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71119.

10

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.